Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Curr Opin Struct Biol ; 75: 102402, 2022 08.
Article in English | MEDLINE | ID: covidwho-1852027

ABSTRACT

The structure and post-translational processing of the SARS-CoV-2 spike glycoprotein (S) is intimately associated with the function of the virus and of sterilising vaccines. The surface of the S protein is extensively modified by glycans, and their biosynthesis is driven by both the wider cellular context, and importantly, the underlining protein structure and local glycan density. Comparison of virally derived S protein with both recombinantly derived and adenovirally induced proteins, reveal hotspots of protein-directed glycosylation that drive conserved glycosylation motifs. Molecular dynamics simulations revealed that, while the S surface is extensively shielded by N-glycans, it presents regions vulnerable to neutralising antibodies. Furthermore, glycans have been shown to influence the accessibility of the receptor binding domain and the binding to the cellular receptor. The emerging picture is one of unifying, principles of S protein glycosylation and an intimate role of glycosylation in immunogen structure and efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , Glycosylation , Humans , Polysaccharides/metabolism , Protein Binding
2.
Cell Rep ; 38(5): 110318, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1654152

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/administration & dosage , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/genetics , Cricetinae , Epitopes , Guinea Pigs , Immunogenicity, Vaccine , Mice , Nanoparticles/chemistry , Nucleic Acid-Based Vaccines/administration & dosage , Nucleic Acid-Based Vaccines/chemistry , Nucleic Acid-Based Vaccines/genetics , Nucleic Acid-Based Vaccines/immunology , Polysaccharides/chemistry , Polysaccharides/genetics , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccine Potency
3.
J Mol Biol ; 434(2): 167332, 2022 01 30.
Article in English | MEDLINE | ID: covidwho-1492301

ABSTRACT

Extensive glycosylation of viral glycoproteins is a key feature of the antigenic surface of viruses and yet glycan processing can also be influenced by the manner of their recombinant production. The low yields of the soluble form of the trimeric spike (S) glycoprotein from SARS-CoV-2 has prompted advances in protein engineering that have greatly enhanced the stability and yields of the glycoprotein. The latest expression-enhanced version of the spike incorporates six proline substitutions to stabilize the prefusion conformation (termed SARS-CoV-2 S HexaPro). Although the substitutions greatly enhanced expression whilst not compromising protein structure, the influence of these substitutions on glycan processing has not been explored. Here, we show that the site-specific N-linked glycosylation of the expression-enhanced HexaPro resembles that of an earlier version containing two proline substitutions (2P), and that both capture features of native viral glycosylation. However, there are site-specific differences in glycosylation of HexaPro when compared to 2P. Despite these discrepancies, analysis of the serological reactivity of clinical samples from infected individuals confirmed that both HexaPro and 2P protein are equally able to detect IgG, IgA, and IgM responses in all sera analysed. Moreover, we extend this observation to include an analysis of glycan engineered S protein, whereby all N-linked glycans were converted to oligomannose-type and conclude that serological activity is not impacted by large scale changes in glycosylation. These observations suggest that variations in glycan processing will not impact the serological assessments currently being performed across the globe.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Mutation, Missense/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood , Binding Sites/genetics , COVID-19/virology , Glycosylation , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Mannose/metabolism , Mutation, Missense/genetics , Oligosaccharides/metabolism , Polysaccharides/metabolism , Proline/genetics , Proline/immunology , Proline/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1387101

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
5.
J Mol Biol ; 433(4): 166762, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1386060

ABSTRACT

The severity of SARS-CoV-2 infection is highly variable and yet the molecular basis for this effect remains elusive. One potential contribution are differences in the glycosylation of target human cells, particularly as SARS-CoV-2 has the capacity to bind sialic acid which is a common, and highly variable, terminal modification of glycans. The viral spike glycoprotein (S) of SARS-CoV-2 and the human cellular receptor, angiotensin-converting enzyme 2 (ACE2) are both densely glycosylated. We therefore sought to investigate whether the glycosylation state of ACE2 impacts the interaction with SARS-CoV-2 viral spike. We generated a panel of engineered ACE2 glycoforms which were analyzed by mass spectrometry to reveal the site-specific glycan modifications. We then probed the impact of ACE2 glycosylation on S binding and revealed a subtle sensitivity with hypersialylated or oligomannose-type glycans slightly impeding the interaction. In contrast, deglycosylation of ACE2 did not influence SARS-CoV-2 binding. Overall, ACE2 glycosylation does not significantly influence viral spike binding. We suggest that any role of glycosylation in the pathobiology of SARS-CoV-2 will lie beyond its immediate impact of receptor glycosylation on virus binding.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Glycosylation , Host-Pathogen Interactions , Humans , Models, Molecular , Polysaccharides/analysis , Protein Binding
6.
ACS Cent Sci ; 7(4): 594-602, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1225486

ABSTRACT

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL